Integrated Cancer Research Foundation – Kenya

Integrated Cancer Research Foundation - Kenya

Evidence Based Research & Awareness


miR-4716-3p and the Target AKT2 Gene/rs2304186 SNP are Associated with Blood Cancer Pathogenesis in Pakistani Population


March 16, 2024


4:00 - 5:00 PM (EAT)


Jairus Nandwa, PhD


AKT2 is crucial for cancer cells’ invasion, metastasis, and survival. It is possible downstream gene target of cancer glycolysis-related microRNAs. The study investigated the role of miRNA-4716-3p, rs2304186, and the AKT2 gene in blood cancer pathogenesis. RT-qPCR was used to analyze AKT2 gene mRNA and miRNA-4716-3p expression in 200 blood cancer samples and 200 healthy controls. Furthermore, Tetra-ARMS PCR was used to examine the rs2304186 AKT2 SNP in 300 patients and 290 control samples. miRNA-4716-3p was shown to be significantly downregulated (p = 0.0294), whereas mRNA expression of the AKT2 gene was found to be significantly upregulated (p = 0.0034) in blood cancer patients compared to healthy individuals. miRNA-4716-3p downregulation (p = 0.0466) was more pronounced, while AKT2 upregulation was non-significant (p = 0.1661) in untreated patients compared to chemotherapy-treated patients. Blood cancer risk was significantly associated with the rs2304186 GT genotype (p = 0.0432), TT genotype (p = 0.0502), and mutant allele (T) frequency (p = 0.0008). Polymorphism rs2304186 was associated with an increased risk of blood cancer in dominant (p = 0.0011), recessive (p = 0.0502), and additive (p = 0.0008) genetic models. The results suggested that the rs2304186 and the deregulated expression of miRNA-4716-3p and AKT2 gene at the mRNA level may significantly increase the incidence of blood cancer, particularly in the Pakistani population. Therefore, these may function as suitable biomarkers for blood cancer diagnosis and prognosis. Additional, larger-scale investigations may be required to affirm these results.